Files
puaros/packages/ipuaro/src/infrastructure/llm/OllamaClient.ts
imfozilbek 68f927d906 feat(ipuaro): add LLM integration module
- OllamaClient: ILLMClient implementation with tool support
- System prompt and context builders for project overview
- 18 tool definitions across 6 categories (read, edit, search, analysis, git, run)
- XML response parser for tool call extraction
- 98 new tests (419 total), 96.38% coverage
2025-12-01 00:10:11 +05:00

303 lines
8.7 KiB
TypeScript

import { type Message, Ollama, type Tool } from "ollama"
import type {
ILLMClient,
LLMResponse,
ToolDef,
ToolParameter,
} from "../../domain/services/ILLMClient.js"
import type { ChatMessage } from "../../domain/value-objects/ChatMessage.js"
import { createToolCall, type ToolCall } from "../../domain/value-objects/ToolCall.js"
import type { LLMConfig } from "../../shared/constants/config.js"
import { IpuaroError } from "../../shared/errors/IpuaroError.js"
import { estimateTokens } from "../../shared/utils/tokens.js"
/**
* Ollama LLM client implementation.
* Wraps the Ollama SDK for chat completions with tool support.
*/
export class OllamaClient implements ILLMClient {
private readonly client: Ollama
private readonly host: string
private readonly model: string
private readonly contextWindow: number
private readonly temperature: number
private readonly timeout: number
private abortController: AbortController | null = null
constructor(config: LLMConfig) {
this.host = config.host
this.client = new Ollama({ host: this.host })
this.model = config.model
this.contextWindow = config.contextWindow
this.temperature = config.temperature
this.timeout = config.timeout
}
/**
* Send messages to LLM and get response.
*/
async chat(messages: ChatMessage[], tools?: ToolDef[]): Promise<LLMResponse> {
const startTime = Date.now()
this.abortController = new AbortController()
try {
const ollamaMessages = this.convertMessages(messages)
const ollamaTools = tools ? this.convertTools(tools) : undefined
const response = await this.client.chat({
model: this.model,
messages: ollamaMessages,
tools: ollamaTools,
options: {
temperature: this.temperature,
},
stream: false,
})
const timeMs = Date.now() - startTime
const toolCalls = this.extractToolCalls(response.message)
return {
content: response.message.content,
toolCalls,
tokens: response.eval_count ?? estimateTokens(response.message.content),
timeMs,
truncated: false,
stopReason: this.determineStopReason(response, toolCalls),
}
} catch (error) {
if (error instanceof Error && error.name === "AbortError") {
throw IpuaroError.llm("Request was aborted")
}
throw this.handleError(error)
} finally {
this.abortController = null
}
}
/**
* Count tokens in text.
* Uses estimation since Ollama doesn't provide a tokenizer endpoint.
*/
async countTokens(text: string): Promise<number> {
return Promise.resolve(estimateTokens(text))
}
/**
* Check if LLM service is available.
*/
async isAvailable(): Promise<boolean> {
try {
await this.client.list()
return true
} catch {
return false
}
}
/**
* Get current model name.
*/
getModelName(): string {
return this.model
}
/**
* Get context window size.
*/
getContextWindowSize(): number {
return this.contextWindow
}
/**
* Pull/download model if not available locally.
*/
async pullModel(model: string): Promise<void> {
try {
await this.client.pull({ model, stream: false })
} catch (error) {
throw this.handleError(error, `Failed to pull model: ${model}`)
}
}
/**
* Check if a specific model is available locally.
*/
async hasModel(model: string): Promise<boolean> {
try {
const result = await this.client.list()
return result.models.some((m) => m.name === model || m.name.startsWith(`${model}:`))
} catch {
return false
}
}
/**
* List available models.
*/
async listModels(): Promise<string[]> {
try {
const result = await this.client.list()
return result.models.map((m) => m.name)
} catch (error) {
throw this.handleError(error, "Failed to list models")
}
}
/**
* Abort current generation.
*/
abort(): void {
if (this.abortController) {
this.abortController.abort()
}
}
/**
* Convert ChatMessage array to Ollama Message format.
*/
private convertMessages(messages: ChatMessage[]): Message[] {
return messages.map((msg): Message => {
const role = this.convertRole(msg.role)
if (msg.role === "tool" && msg.toolResults) {
return {
role: "tool",
content: msg.content,
}
}
if (msg.role === "assistant" && msg.toolCalls && msg.toolCalls.length > 0) {
return {
role: "assistant",
content: msg.content,
tool_calls: msg.toolCalls.map((tc) => ({
function: {
name: tc.name,
arguments: tc.params,
},
})),
}
}
return {
role,
content: msg.content,
}
})
}
/**
* Convert message role to Ollama role.
*/
private convertRole(role: ChatMessage["role"]): "user" | "assistant" | "system" | "tool" {
switch (role) {
case "user":
return "user"
case "assistant":
return "assistant"
case "system":
return "system"
case "tool":
return "tool"
default:
return "user"
}
}
/**
* Convert ToolDef array to Ollama Tool format.
*/
private convertTools(tools: ToolDef[]): Tool[] {
return tools.map(
(tool): Tool => ({
type: "function",
function: {
name: tool.name,
description: tool.description,
parameters: {
type: "object",
properties: this.convertParameters(tool.parameters),
required: tool.parameters.filter((p) => p.required).map((p) => p.name),
},
},
}),
)
}
/**
* Convert ToolParameter array to JSON Schema properties.
*/
private convertParameters(
params: ToolParameter[],
): Record<string, { type: string; description: string; enum?: string[] }> {
const properties: Record<string, { type: string; description: string; enum?: string[] }> =
{}
for (const param of params) {
properties[param.name] = {
type: param.type,
description: param.description,
...(param.enum && { enum: param.enum }),
}
}
return properties
}
/**
* Extract tool calls from Ollama response message.
*/
private extractToolCalls(message: Message): ToolCall[] {
if (!message.tool_calls || message.tool_calls.length === 0) {
return []
}
return message.tool_calls.map((tc, index) =>
createToolCall(
`call_${String(Date.now())}_${String(index)}`,
tc.function.name,
tc.function.arguments,
),
)
}
/**
* Determine stop reason from response.
*/
private determineStopReason(
response: { done_reason?: string },
toolCalls: ToolCall[],
): "end" | "length" | "tool_use" {
if (toolCalls.length > 0) {
return "tool_use"
}
if (response.done_reason === "length") {
return "length"
}
return "end"
}
/**
* Handle and wrap errors.
*/
private handleError(error: unknown, context?: string): IpuaroError {
const message = error instanceof Error ? error.message : String(error)
const fullMessage = context ? `${context}: ${message}` : message
if (message.includes("ECONNREFUSED") || message.includes("fetch failed")) {
return IpuaroError.llm(`Cannot connect to Ollama at ${this.host}`)
}
if (message.includes("model") && message.includes("not found")) {
return IpuaroError.llm(
`Model "${this.model}" not found. Run: ollama pull ${this.model}`,
)
}
return IpuaroError.llm(fullMessage)
}
}